

CASE STUDY POTASH

- 1. <u>Технологическая задача</u> управление качеством конечной продукции поташа (с 95-99% концентрацией КСІ), получаемого в результате галургического процесса (галургический процесс метод обработки калийных руд с помощью горячего выщелачивания с последующей кристаллизацией калийной соли из насыщенных солевых рассолов). Основная примесь в калийных рудах это NaCl, дополнительные примеси нерастворимые компоненты Fe, Si, Ca, Al и т.д.
- 2. <u>Способы решения</u> технологической задачи. В процессе производства необходимо решать следующие задачи:
 - а. Оперативно регулировать количество воды для промывки полученного продукта от примесей. Увеличение подачи воды повышает качество конечного продукта, но уменьшает его количество за счет его растворения в ней.
 - b. Получение продукции заданного качества путем регулирования подачи воды.
 - с. Определение сорта конечной продукции для определения возможности отгрузки по контрактам на поставку поташа разных марок и с разными допусками.
- 3. Потенциальные источники окупаемости при решении задачи
 - а. Снижение рекламаций из-за отгрузки некачественной продукции.
 - b. Снижение позитивного допуска (т.е. сокращение отгрузки продукта с качеством более высоким, чем предусмотрено контрактом).
 - с. Экономия технологической воды.
 - d. Снижение кол-ва отходов и затрат на утилизацию.
- 4. Схема потоков и потенциальные места установки, схема управления

На основании данных о содержании примесей в конечном продукте (сухом или влажном) определяется сорт продукции и одновременно корректируется количество воды для промывки влажного продукта после галургического процесса.

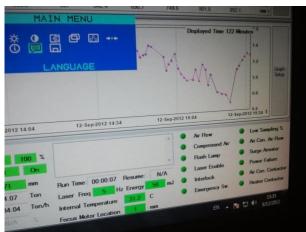
Данная схема является приблизительной и приведена для иллюстрации потоков материала и схемы управления. Отдельные элементы в конкретном месте установки могут иметь иную реализацию и внешний вид, чем приведено на схеме.

5. Описание места установки — окружающая среда, сегрегация материала

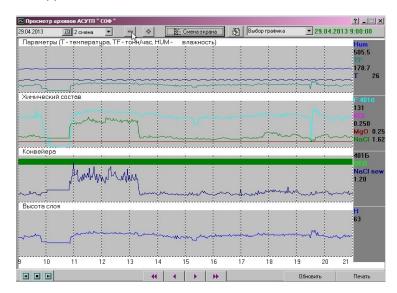
- а. МАҮА установлена на конвейере с сухой готовой продукцией, поступающей после горячей сушки на наклонный (12 град) конвейер, находящийся примерно на 11 м выше ближайшего бетонного основания.
- b. На поверхность готового продукта поступает отсев из циклонов с повышенным содержанием примесей, в первую очередь NaCl.

- с. Высота материала и профиль поверхности может меняться в зависимости от состояния и ремонтов оборудования.
- d. Температура материала до 200 град, температура воздуха вокруг места установки = -15 +35 град.
- е. В связи с вибрациями конвейера, перемещающего сухой порошкообразный материал, в месте установки анализатора имеется экстремальная запыленность.
- f. Влажность воздуха в месте установки над поверхностью материала может достигать 100% за счет образования конденсата в точке соприкосновения горячего материала с холодным воздухом в холодное время года может возникать пар между материалом и анализатором, содержащий хлориды и примеси загрязняющих элементов (в том числе Fe).
- 6. Решение проблем места установки (адаптация к установке анализатора).

- а. Для обеспечения представительности объема материала и его поверхности, на которую периодически поступает возврат циклонной пыли с повышенным содержанием Na установлено перемешивающее устройство в виде закрепленной по бокам конвейера цепи.
- b. В связи с предельным углом наклона конвейера, допустимого для данной модели анализатора, анализатор расположен на максимально допустимой с точки зрения возможности фокусировки лазерного луча высоте над поверхностью конвейера (37 см).
- с. Для обеспечения высоты поверхности материала, позволяющей осуществлять фокусировку лазера на ней, установлено простое механическое устройство, обеспечивающее минимально допустимую высоту материала независимо от нагрузки (производительности) конвейера во все время его работы.
- d. Для снижения уровня парения под анализатором были установлены тканевые «экраны» с направлений основных потоков холодного воздуха в зимнее время со стороны галереи и ворот цеха.

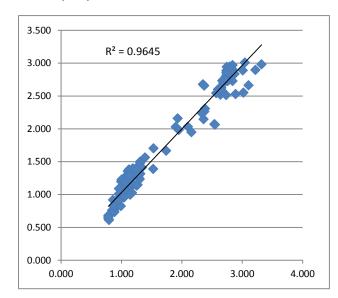

е. Для снижения уровня запыленности был также установлен «экран» со стороны точки подачи материала на конвейер.

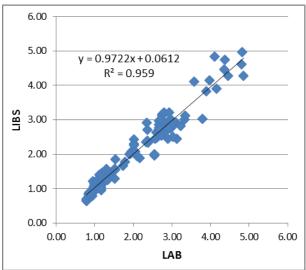
7. Описание машины на данном месте



а. Для снижения уровня вибрации, передаваемых на МАҮА от конвейера анализатор установлен на специальной раме высотой 11 м, стоящей на бетонном основании и не имеющей контактов с металлоконструкциями самого конвейера.

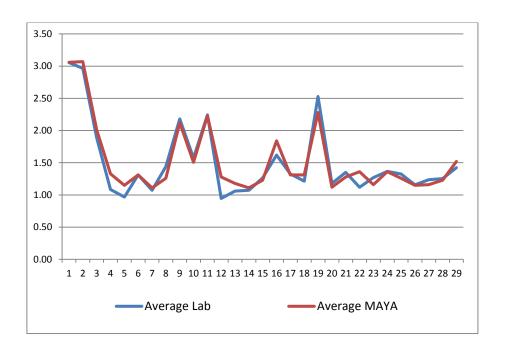
- b. Забор воздуха для системы защиты анализатора от пыли берется на расстоянии около 10 м от места установки, а для кондиционера из соседнего помещения с более низким уровнем запыленности.
- с. Рама анализатора предусматривает возможность калибровки в статическом режиме (на отобранных и/или стандартных образцах), а также проведения сервисного обслуживания анализатора без остановки конвейера.
- d. Корпус анализатора выполнен из нержавеющей стали.
- е. Экран оператора позволяет оперативно отслеживать уровень содержания NaCl в конечной продукции и оперативно принимать решения об изменении дозирования промывочной воды.




f. Информация от анализатора поступает в SCADA заказчика и используется для контроля за процессом в автоматическом режиме.

8. Аналитические результаты (калибровка) на конвейере

а. В связи с особенностями технологии производства материала, подаваемого на конвейер с установленным анализатором, имеются сильные нелинейности в параметрах спектральной картины и общего содержания NaCl. В связи с этим на анализаторе установлено 2 алгоритма для анализа — один с большой точностью в диапазоне до 3% NaCl (используется для управления процессом производства материалов 98-99% КСl) и второй с худшей точностью, но работающий в широком диапазоне содержания NaCl (До 6%) — который используется для управления качеством продукции с содержанием КСl 95%. Поскольку данные продукты имеют существенные отличия в технологии производства, они производятся в разное время и заказчик заведомо знает, какой продукт он в данный момент производит. Поэтому установка 2 алгоритмов допустима в данном случае и позволяет повысить точность при производстве высококачественной продукции.


b. Примеры обоих калибровочных алгоритмов по примерно 100 пробам, отобранных на конвейере синхронно с работой анализатора в течение 2-3 мин приведены на рисунках:

9. Долгосрочные тренды и сравнение со средними показаниями лаборатории заказчика

Average Lab	Average MAYA	Error	Average Lab	Average MAYA	Error
3,05	3,06	0,01	1,62	1,84	0,22
2,96	3,07	0,11	1,33	1,31	-0,02
1,89	2,01	0,12	1,21	1,31	0,10
1,08	1,33	0,24	2,53	2,28	-0,25
0,97	1,15	0,18	1,18	1,12	-0,06
1,31	1,31	0,00	1,35	1,28	-0,07
1,07	1,11	0,04	1,12	1,36	0,24
1,44	1,26	-0,18	1,27	1,16	-0,11
2,18	2,12	-0,06	1,37	1,36	-0,01
1,57	1,51	-0,06	1,33	1,26	-0,07
2,24	2,23	-0,01	1,16	1,15	-0,01
0,95	1,28	0,34	1,24	1,16	-0,08
1,06	1,18	0,12	1,25	1,23	-0,02
1,07	1,11	0,04	1,42	1,52	0,10
1,27	1,23	-0,03			
Average error					0,10

10. Решенные клиентом задачи и источник экономического эффекта

- а. Появилась возможность оперативно управлять подачей воды на промывку готового продукта от примесей (NaCl + нерастворимые примеси).
- b. Снизился допуск при отгрузке продукции снижение содержания КСI сверх оговоренного в контрактах.
- с. Возможность принимать заказы с повышенным содержанием КСІ (99%) с более высокой ценой и поддерживать высокое качество как за счет оперативного регулирования качества промывки (дозирования воды), так и за счет выбора материала высокого качества из общего потока с несколько более низким качеством (98%).
- 11. <u>Экологичность</u> снижение расхода воды, отходов, снижение вредных примесей в удобрениях.

12. Отзывы заказчика

- а. По отзывам заказчика, окупаемость за счет приведенных факторов составила 3-4 месяца.
- b. В настоящее время приобретаются дополнительные анализаторы на конвейеры в другие цеха, с аналогичным материалом, но для установки до сушильной печи (на влажный материал).
- с. Рассматривается вариант установки МАҮА для анализа дробленой руды на содержание нерастворимого остатка с целью оперативного реагирование на рост загрязнений в исходной добываемой руде.